Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 666
Filter
1.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732603

ABSTRACT

BACKGROUND: Vitamin D plays a vital role in modulating both innate and adaptive immune systems. Therefore, vitamin D deficiency has been associated with higher levels of autoimmune response and increased susceptibility to infections. CYP27B1 encodes a member of the cytochrome P450 superfamily of enzymes. It is instrumental in the conversion of circulating vitamin D (calcifediol) to active vitamin D (calcitriol). This is a crucial step for macrophages to express Cathelicidin Anti-microbial Peptide (CAMP), an anti-bacterial factor released during the immune response. Our recent study indicated that a Crohn's disease (CD)-associated pathogen known as Mycobacterium avium paratuberculosis (MAP) decreases vitamin D activation in macrophages, thereby impeding cathelicidin production and MAP infection clearance. The mechanism by which MAP infection exerts these effects on the vitamin D metabolic axis remains elusive. METHODS: We used two cell culture models of THP-1 macrophages and Caco-2 monolayers to establish the effects of MAP infection on the vitamin D metabolic axis. We also tested the effects of Calcifediol, Calcitriol, and SB203580 treatments on the relative expression of the vitamin D metabolic genes, oxidative stress biomarkers, and inflammatory cytokines profile. RESULTS: In this study, we found that MAP infection interferes with vitamin D activation inside THP-1 macrophages by reducing levels of CYP27B1 and vitamin D receptor (VDR) gene expression via interaction with the TLR2-dependent p38/MAPK pathway. MAP infection exerts its effects in a time-dependent manner, with the maximal inhibition observed at 24 h post-infection. We also demonstrated the necessity to have toll-like receptor 2 (TLR2) for MAP infection to influence CYP27B1 and CAMP expression, as TLR2 gene knockdown resulted in an average increase of 7.78 ± 0.88 and 13.90 ± 3.5 folds in their expression, respectively. MAP infection also clearly decreased the levels of p38 phosphorylation and showed dependency on the p38/MAPK pathway to influence the expression of CYP27B1, VDR, and CAMP which was evident by the average fold increase of 1.93 ± 0.28, 1.86 ± 0.27, and 6.34 ± 0.51 in their expression, respectively, following p38 antagonism. Finally, we showed that calcitriol treatment and p38/MAPK blockade reduce cellular oxidative stress and inflammatory markers in Caco-2 monolayers following macrophage-mediated MAP infection. CONCLUSIONS: This study characterized the primary mechanism by which MAP infection leads to diminished levels of active vitamin D and cathelicidin in CD patients, which may explain the exacerbated vitamin D deficiency state in these cases.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Cathelicidins , Macrophages , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Receptors, Calcitriol , Toll-Like Receptor 2 , Vitamin D , p38 Mitogen-Activated Protein Kinases , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Humans , Toll-Like Receptor 2/metabolism , Macrophages/metabolism , Macrophages/microbiology , Vitamin D/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, Calcitriol/metabolism , Caco-2 Cells , Paratuberculosis/microbiology , Antimicrobial Cationic Peptides/metabolism , THP-1 Cells , MAP Kinase Signaling System , Calcitriol/pharmacology , Signal Transduction
2.
Nutrients ; 16(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474725

ABSTRACT

(1) Background: SARS-CoV-2 affects several immune pathways, including the vitamin D (VDR) and the aryl hydrocarbon receptor pathways (AhR). The aim of the study was the evaluation of the VDR and AhR pathways in the blood of COVID-19 patients with regard to the severity of disease. (2) Methods: Observational, single-center, case-control design. A total of 240 samples were selected for exploration. Patients who tested negative for SARS-CoV-2 but suffered from other respiratory infections (ORIs) served as a control group. (3) Results: VDR-specific mRNA in the blood of patients with mild symptoms (131.2 ± 198.6) was significantly upregulated relative to the VDR expression of the ORI group (23.24 ± 42.60; p < 0.0001); however, VDR expression of critically ill patients showed an impaired upregulation (54.73 ± 68.34; p < 0.001). CYP27B1 expression was not significantly regulated during SARS-CoV-2 infection. There was a downregulation of VDR and CYP27B1 compared to survivors. There was no significant difference in 25(OH)-vitamin D3 levels between critically ill patients with regard to survival (24.3 ± 9.4 vs. 27.1 ± 11.3; p = 0.433). (4) Conclusion: The VDR and AhR pathways are distinctively regulated in patients suffering from COVID-19 depending on the severity of disease. A combination treatment of antiviral drugs and vitamin D substitution should be evaluated for potentially improved prognosis in COVID-19.


Subject(s)
COVID-19 , Vitamin D , Humans , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Calcitriol/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Critical Illness , SARS-CoV-2/metabolism , Vitamins , Calcifediol
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159469, 2024 May.
Article in English | MEDLINE | ID: mdl-38402945

ABSTRACT

This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17ß-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.


Subject(s)
Ovary , Vitamin D , Animals , Female , Vitamin D/metabolism , Ovary/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Arvicolinae/genetics , Arvicolinae/metabolism , Vitamins , Granulosa Cells/metabolism , RNA, Messenger/genetics
4.
Cells ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334631

ABSTRACT

We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.


Subject(s)
Cholecalciferol , Receptors, Calcitriol , Humans , Cholecalciferol/pharmacology , Receptors, Calcitriol/metabolism , Receptors, Retinoic Acid , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Fibroblasts/metabolism , Collagen , Tretinoin
5.
Endocrinology ; 165(1)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38066669

ABSTRACT

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Subject(s)
Familial Hypophosphatemic Rickets , Animals , Mice , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Familial Hypophosphatemic Rickets/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Growth Plate/metabolism , Minerals/therapeutic use , Phosphates , Vitamin D/metabolism
6.
Clin Epigenetics ; 15(1): 140, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644572

ABSTRACT

BACKGROUND: Vitamin D might have anti-tumor effect, which is affected by the genes related to vitamin D metabolic pathway. Epigenetic mechanism may affect the expression level of vitamin D metabolic pathway related genes, then plays an important role in the occurrence and development of colorectal cancer. To date, no study has reported on the association between blood-based DNA methylation level of vitamin D metabolic pathway related genes and colorectal cancer risk. METHODS: A case-control study was conducted including 102 colorectal cancer cases and 102 sex- and age-frequency-matched controls in Guangzhou, China. CpG islands in the VDR, CYP24A1, CYP27B1 and CYP2R1 genes were chosen for DNA methylation analysis by MethylTarget sequencing. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of DNA methylation levels for colorectal cancer. Taking the point with the largest Youden index as the boundary value, the cumulative methylation levels of vitamin D metabolic pathway related genes were divided into hypomethylation and hypermethylation. Unconditional multivariable logistical regression model was used to calculate the adjusted odds ratio (aOR) and 95% confidence intervals (95% CIs) after adjusting for potential confounders. RESULTS: Among 153 CpG sites, 8 CpG sites were significantly different between the cases and the controls. The cumulative methylation level of all CpG sites in CYP2R1 was inversely associated with the risk of colorectal cancer (aOR, 0.49; 95% CI, 0.26-0.91). However, no significant association was found between cumulative methylation levels of all CpG sites in VDR, CYP24A1 and CYP27B1 and colorectal cancer risk. Significant inverse association was observed between cumulative methylation level of significant CpG sites in VDR (aOR, 0.28; 95% CI, 0.16-0.51) and CYP24A1 (aOR, 0.19; 95% CI, 0.09-0.40) and colorectal cancer risk. There were no significant associations between cumulative methylation levels of significant CpG sites in CYP2R1 and CYP27B1 and colorectal cancer risk. CONCLUSIONS: This study indicated that the cumulative methylation levels of significant CpG sites in VDR and CYP24A1 and all CpG sites in CYP2R1 were inversely associated with colorectal cancer risk.


Subject(s)
Colorectal Neoplasms , Vitamin D , Humans , DNA Methylation , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Case-Control Studies , Vitamin D3 24-Hydroxylase/genetics , Vitamins , Colorectal Neoplasms/genetics
7.
J Steroid Biochem Mol Biol ; 234: 106385, 2023 11.
Article in English | MEDLINE | ID: mdl-37633652

ABSTRACT

There is mounting evidence that vitamin D3 regulates female reproductive function critically, while little is known about the function of seasonally variable vitamin D3 in regulating ovarian steroidogenesis. This study examined the seasonal expressions of vitamin D receptor (VDR), vitamin D metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes (P450scc, 3ß-HSD, P450c17, and P450arom) in the ovaries of the wild ground squirrels (Citellus dauricus Brandt) during the different breeding seasons. VDR, CYP2R1, CYP27B1, and CYP24A1 were shown to be localized in different types of ovarian cells in the wild ground squirrels during the breeding and non-breeding seasons. Meanwhile, the mRNA levels of VDR, CYP2R1, CYP27B1, CYP11A1, HSD3B1, CYP17A1, and CYP19A1 in the ovaries were remarkably higher in the breeding season. Furthermore, RNA-seq data of ovaries revealed that 6036 genes were differentially expressed genes (DEGs); further analysis revealed that several DEGs known to be involved in ovarian steroidogenesis pathway and cellular response to vitamin D pathway were identified. In addition, during the breeding season, the concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone, and 17ß-estradiol were greater in the serum of the wild female ground squirrels. This observation was positively correlated with seasonal changes in the concentration of 25(OH)D3, supporting the fact that the 25(OH)D3 content in the ovaries was significantly higher in the breeding season. These findings suggested that seasonal changes in vitamin D3 might regulate the ovarian steroidogenesis of the wild female ground squirrels.


Subject(s)
Cholecalciferol , Ovary , Female , Animals , Cholecalciferol/metabolism , Seasons , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/metabolism , Sciuridae/genetics , Sciuridae/metabolism , Vitamin D/metabolism
8.
J Steroid Biochem Mol Biol ; 233: 106369, 2023 10.
Article in English | MEDLINE | ID: mdl-37490983

ABSTRACT

OBJECTIVES: In a large cohort of healthy infants and toddlers 6-36 months of age (n = 776), we have been exploring the potential role of genetic variation in predisposition to vitamin D insufficiency. The genes encoding the key cytochrome P450 hydroxylases (CYP2R1, CYP24A1, and CYP27B1) harbour recurrent mutations of uncertain effect. This study was undertaken to look for biochemically relevant associations of these variants with inter-individual differences in vitamin D metabolism in an at-risk pediatric population. METHODS: Genotyping for CYP2R1-CT (c.-1127 C>T, rs10741657), CYP24A1-AG (c.-686A>G, rs111622401), and CYP27B1-CA (c.-1261 C>A, rs10877012) mutations were performed using SNaPshot assay, followed by Sanger sequencing confirmation. Vitamin D metabolites and vitamin D binding protein (DBP) were measured by established methods. RESULTS: In a multivariate regression model, with corrections for co-variates, subjects with the homozygous CYP2R1-TT variant had significantly higher concentrations of 25(OH)D, free 25(OH)D, and 24,25(OH)2D levels. In subjects with the CYP24A1-AG mutation, concentrations of 25(OH)D were significantly higher. CONCLUSIONS: The CYP2R1-TT and CYP24A1-AG variants have measurable effects on the vitamin D pathway. It seems unlikely that they will be clinically relevant in isolation, but they may be members of the large pool of infrequent mutations contributing to different risks for the vitamin D deficiency phenotype.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Vitamin D , Child , Child, Preschool , Humans , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Cytochrome P450 Family 2/genetics , Vitamins , Cytochrome P-450 Enzyme System/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
9.
Front Endocrinol (Lausanne) ; 14: 1213361, 2023.
Article in English | MEDLINE | ID: mdl-37441497

ABSTRACT

The regulation of mineral homeostasis involves the three mineralotropic hormones PTH, FGF23 and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Early research efforts focused on PTH and 1,25(OH)2D3 and more recently on FGF23 have revealed that each of these hormones regulates the expression of the other two. Despite early suggestions of transcriptional processes, it has been only recently that research effort have begun to delineate the genomic mechanisms underpinning this regulation for 1,25(OH)2D3 and FGF23; the regulation of PTH by 1,25(OH)2D3, however, remains obscure. We review here our molecular understanding of how PTH induces Cyp27b1 expression, the gene encoding the enzyme responsible for the synthesis of 1,25(OH)2D3. FGF23 and 1,25(OH)2D3, on the other hand, function by suppressing production of 1,25(OH)2D3. PTH stimulates the PKA-induced recruitment of CREB and its coactivator CBP at CREB occupied sites within the kidney-specific regulatory regions of Cyp27b1. PKA activation also promotes the nuclear translocation of SIK bound coactivators such as CRTC2, where it similarly interacts with CREB occupied Cyp27b1 sites. The negative actions of both FGF23 and 1,25(OH)2D3 appear to suppress Cyp27b1 expression by opposing the recruitment of CREB coactivators at this gene. Reciprocal gene actions are seen at Cyp24a1, the gene encoding the enzyme that degrades 1,25(OH)2D3, thereby contributing to the overall regulation of blood levels of 1,25(OH)2D3. Relative to PTH regulation, we summarize what is known of how 1,25(OH)2D3 regulates PTH suppression. These studies suggest that it is not 1,25(OH)2D3 that controls PTH levels in healthy subjects, but rather calcium itself. Finally, we describe current progress using an in vivo approach that furthers our understanding of the regulation of Fgf23 expression by PTH and 1,25(OH)2D3 and provide the first evidence that P may act to induce Fgf23 expression via a complex transcriptional mechanism in bone. It is clear, however, that additional advances will need to be made to further our understanding of the inter-regulation of each of these hormonal genes.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Calcitriol , Humans , Calcitriol/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Parathyroid Hormone/metabolism , Kidney/metabolism , Calcium/metabolism
10.
J Vet Intern Med ; 37(4): 1507-1513, 2023.
Article in English | MEDLINE | ID: mdl-37293695

ABSTRACT

Rickets is a disorder of bone development and can be the result of either dietary or genetic causes. Here, related pugs from 2 litters were included. Three pugs had clinical signs including, lameness, bone deformities, and dyspnea. One other pug was found dead. Radiographs of 2 affected pugs, 5 and 6 months old, showed generalized widening, and irregular margination of the physes of both the appendicular and the axial skeleton with generalized decrease in bone opacity and bulbous swelling of the costochondral junctions. Two pugs had low serum calcium and 1,25 (OH)2 D3 concentrations. Test results further indicated secondary hyperparathyroidism with adequate concentrations of 25-hydroxyvitamin D. Necropsy revealed tongue-like projections of cartilage extending into the metaphysis consistent with rickets, loss of metaphyseal mineralization and lung pathology. Vitamin D-dependent rickets was diagnosed. A truncating mutation in the 1α-hydroxylase gene (CYP27B1) was identified by genome sequence analysis of the pugs with VDDR type 1A. Vitamin D-dependent rickets type 1A can occur in young pugs, and if left untreated is a life-threatening condition. Early medical intervention can reverse clinical signs and should be instituted as soon as possible.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Rickets , Animals , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Rickets/genetics , Rickets/veterinary , Vitamin D , Mutation , Diet
11.
Nutrients ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242266

ABSTRACT

Isochromosome 12p (iChr12p) is typical in almost all invasive testicular cancers. Increased copy number of genes on 12p is associated with the development of a clinically manifest tumor; however, the causative genes have not yet been identified. Chromosome 12 harbors many genes involved in Vitamin D metabolism. RNAseq analysis of Vitamin D receptor (VDR) genes from the TCGA cohort revealed that clustering of VDR expression signatures could differentiate between pure seminomas and non-seminomatous germ cell tumors (NSGCT). Using TCGA mRNA expression of anabolic (CYP2R1, CYP27A1 and CYP27B1) and catabolic (CYP24A1) Vitamin D enzymes, positive (PTHLH, IFNG, and TNF) and negative (FGF23) feedback regulators could also clearly distinguish between pure seminomas and NSGCT. We hypothesize that the regulation of Vitamin D metabolism might be disturbed through iChr12p formation, influencing testicular carcinogenesis via increased FGF23 and PTHLH expression. While FGF23 represses CYP27B1 and activates catabolism of active hormone, increased PTHLH secretion can lead to hypercalcemia via inactivation of VDR. In conclusion, testicular cancer is associated with extensive modifications in intratesticular Vitamin D homeostasis. Further research is needed to clarify whether Vitamin D deficiency causes the formation of iChr12p and whether Vitamin D deficiency via iChr12p genomic aberration is involved in testicular carcinogenesis.


Subject(s)
Isochromosomes , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Vitamin D Deficiency , Male , Humans , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Neoplasms, Germ Cell and Embryonal/genetics , Vitamin D/metabolism , Cytochrome P-450 Enzyme System/genetics , Receptors, Calcitriol/genetics
12.
BMC Pediatr ; 23(1): 275, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259065

ABSTRACT

BACKGROUND: Neonatal hyperbilirubinemia (NH) is a major cause of hospitalization after birth. Previous studies indicated that vitamin D deficiency might play an important role in NH susceptibility, but the results were controversial. Meanwhile, there has been limited description of the association between vitamin D related genes single nucleotide polymorphisms (SNP) and NH susceptibility. We aimed to investigate the vitamin D metabolic pathway genes polymorphisms and vitamin D levels with NH susceptibility. METHODS: We retrospectively analyzed the clinical data, vitamin D levels and its metabolic pathway gene polymorphisms of 187 NH neonates and 149 controls at Tianjin Children's Hospital/Tianjin University Children's Hospital between April 2019 and August 2022. Vitamin D levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the genetic polymorphism of NADSYN1/DHCR7, GC, CYP2R1, CYP24A1 and CYP27B1 was detected by high resolution melting (HRM) analysis. RESULTS: The frequency of vitamin D deficiency (25(OH)D < 15 ng/mL) was significantly increased in the NH group compared to controls. TT genotype of rs12785878 and GT genotype of rs10877012 were protective factors of vitamin D deficiency and NH, and GT genotype and dominant model carriers of rs12785878 had a higher risk of severe NH than the GG genotype carriers (GT genotype: OR: 2.43; 95% CI: 1.22-4.86; P = 0.012, dominant model: OR: 1.97; 95% CI: 1.04-3.73; P = 0.037). GC gene haplotype was associated with vitamin D deficiency. No significant SNP-SNP and SNP-vitamin D levels interaction combinations were found. CONCLUSIONS: There were associations among NH, vitamin D deficiency and NADSYN1/DHCR7 and CYP27B1 polymorphisms, TT genotype of rs12785878 and GT genotype of rs10877012 could reduce the risk of vitamin D deficiency and NH. Furthermore, rs12785878 was significantly associated with severe NH.


Subject(s)
Vitamin D Deficiency , Vitamin D , Child , Infant, Newborn , Humans , Retrospective Studies , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Vitamins , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics , Polymorphism, Single Nucleotide , Genotype , Genetic Predisposition to Disease
13.
J Steroid Biochem Mol Biol ; 232: 106331, 2023 09.
Article in English | MEDLINE | ID: mdl-37244301

ABSTRACT

The role of vitamin D3 and its metabolites in cancer and especially as a treatment option has been widely disputed. Clinicians noting low serum 25-hydroxyvitamin D3 [25(OH)D3] levels in their patients, recommend vitamin D3 supplementation as a method of reducing the risk of cancer; however, data supporting this are inconsistent. These studies rely on systemic 25(OH)D3 as an indicator of hormone status, but 25(OH)D3 is further metabolized in the kidney and other tissues under regulation by several factors. This study examined if breast cancer cells also possess the ability to metabolize 25(OH)D3, and if so, whether the resulting metabolites are secreted locally; if this ability reflects ERα66 status; and if they possess vitamin D receptors (VDR). To address this question, estrogen receptor alpha (ERα) positive (MCF-7) and ERα negative (HCC38 and MDA-MB-231) breast cancer cell lines were examined for expression of ERα66, ERα36, CYP24A1, CYP27B1, and VDR as well as for local production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after treatment with 25(OH)D3. The results showed that independent of ER status, breast cancer cells express the enzymes CYP24A1 and CYP27B1, which are responsible for converting 25(OH)D3 into its dihydroxylated forms. Moreover, these metabolites are produced at levels comparable to the levels observed in blood. They are positive for VDR, indicating that they can respond to 1α,25(OH)2D3, which can upregulate CYP24A1. These findings suggest that vitamin D metabolites may contribute to the tumorigenicity of breast cancer via autocrine and/or paracrine mechanisms.


Subject(s)
Breast Neoplasms , Cholecalciferol , Humans , Female , Cholecalciferol/pharmacology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Breast Neoplasms/drug therapy , Estrogen Receptor alpha , Vitamin D/pharmacology , Vitamin D/metabolism , Receptors, Calcitriol/metabolism
14.
Nutrients ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986255

ABSTRACT

The objective of this systematic review was to provide a compilation of all the literature available on the association between single-nucleotide polymorphisms (SNPs) in the genes involved in the metabolic pathway of vitamin D and overall survival (OS) and progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC). This systematic review was conducted in accordance with the PRISMA guidelines. It included all the literature published up to 1 November 2022 and was carried out in four databases (Medline [PubMed], Scopus, Web of Science, and Embase), using the PICO strategy, with relevant keywords related to the objective. The quality of the studies included was evaluated with an assessment tool derived from the Strengthening the Reporting of Genetic Association Studies (STREGA) statement. Six studies were included in this systematic review. Our findings showed that the BsmI (rs1544410), Cdx-2 (rs11568820), FokI (rs2228570), ApaI (rs7975232), TaqI (rs731236), rs4646536, rs6068816, rs7041, and rs10741657 SNPs in the genes that play a part in vitamin D synthesis (CYP2R1, CYP27B1), transport (GC), and metabolism (CYP24A1), as well as in the vitamin D receptor (VDR), are associated with OS and/or PFS in patients with NSCLC. The SNPs in VDR have been the most extensively analyzed. This systematic review summed up the available evidence concerning the association between 13 SNPs in the main genes involved in the vitamin D metabolic pathway and prognosis in NSCLC. It revealed that SNPs in the VDR, CYP27B1, CYP24A1, GC, and CYP2R1 genes could have an impact on survival in this disease. These findings suggest the identification of prognostic biomarkers in NSCLC patients. However, evidence remains sparse for each of the polymorphisms examined, so these findings should be treated with caution.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Receptors, Calcitriol/genetics , Carcinoma, Non-Small-Cell Lung/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/genetics , Lung Neoplasms/genetics , Vitamin D , Polymorphism, Single Nucleotide , Biomarkers , Vitamins , Genetic Predisposition to Disease , Genotype , Case-Control Studies , Cytochrome P450 Family 2/genetics
15.
J Neuroimmunol ; 377: 578057, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36921477

ABSTRACT

OBJECTIVES: This study aimed to determine the association of the NF-κB inflammatory signaling pathway with vitamin D status in older cerebral small vessel disease (SVD) patients. METHODS: We measured serum 25(OH)D, pro-and anti-inflammatory cytokines, and mRNA levels of the vitamin D-activating enzyme, CYP27B1, as well as NF-kB, COX-2, the chemokine-CCL2, IL-1ß, IL-6, TNF-α, TGF-ß, and IL-10, in cerebral SVD patients aged ≥60 years presenting with vascular dementia and age and gender-matched healthy controls. RESULTS: Low vitamin D status (insufficiency: serum 25(OH)D 12-20 ng/ml; deficiency: ≤12 ng/ml) was more prevalent among patients compared to controls. The mRNA levels of NF-kB, COX-2, CCL2, IL-1ß, and IL-6, and serum levels of pro-inflammatory cytokines (IL-1α, IL-1ß, IL-6, and TNF-α) were significantly higher in cases compared to controls. There was a significant correlation between CYP27B1 and NF-kB, COX-2, CCL2, and IL-1ß gene expression. Serum IL-1α, IL-1ß, and IL-6 concentrations and the expression of CCL-2, NF-kB2, and NF-kB3 genes were higher in vitamin D-deficient subjects compared to vitamin D-sufficient subjects. There was a significant negative correlation between serum 25(OH)D and IL-1α, IL-6, and TNF-α, and a positive correlation between 25(OH)D and IL-10. CONCLUSION: Low vitamin D is associated with an inflammatory response via NF-kB signaling, which could play a role in the etio-pathogenesis of SVD. Further large-scale studies are required to validate our findings.


Subject(s)
Cerebral Small Vessel Diseases , Vitamin D Deficiency , Humans , Aged , Interleukin-10 , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6 , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Cyclooxygenase 2/genetics , Vitamin D , Cytokines/genetics , RNA, Messenger
16.
Lifestyle Genom ; 16(1): 98-105, 2023.
Article in English | MEDLINE | ID: mdl-36854277

ABSTRACT

INTRODUCTION: Recent evidence suggests that vitamin D may interact with the epigenome and play a role in the pain experience. In order for proper functioning to occur, there must be an adequate level of vitamin D present, made possible by enzymatic reactions that allow vitamin D to be biologically active. The purpose of this study was to explore the epigenetic landscape of genes involved in vitamin D metabolism in individuals with and without chronic knee pain. METHODS: Community-dwelling individuals recruited as part of a larger study focused on knee pain provided demographic, clinical, and pain-related information, as well as an intravenous blood sample to determine DNA methylation levels at CpG sites. RESULTS: There were differences in DNA methylation between those with and without pain in genes that code for enzymes related to vitamin D metabolism: CYP27B1 (1-α-hydroxylase). There was also hypermethylation on the gene that codes for the vitamin D receptor (VDR). CONCLUSIONS: The presence of chronic pain is associated with epigenetic modifications in genes responsible for the expression of enzymes involved in vitamin D metabolism and cellular function. These results lay groundwork in understanding the mechanism underlying the association between vitamin D and chronic pain.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Chronic Pain , Humans , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Chronic Pain/genetics , Vitamin D/metabolism , Epigenesis, Genetic , DNA Methylation , Vitamins
17.
Eur J Oral Sci ; 131(2): e12916, 2023 04.
Article in English | MEDLINE | ID: mdl-36683003

ABSTRACT

This study evaluated the association between single-nucleotide polymorphisms (SNPs) in vitamin-D-related genes and the amount of external apical root resorption linked to orthodontic treatment. One hundred and forty-three individuals were assessed. The amount of external apical root resorption of upper central incisors (EARRinc ) and lower first molars (EARRmol ) were evaluated in radiographs. Seven SNPs were genotyped across four genes including the vitamin D receptor [VDR], group-specific component [GC], cytochrome P450 family 27 subfamily B member 1 [CYP27B1], and cytochrome P450 family 24 subfamily A member 1 [CYP24A1]. Linear regressions were implemented to determine allele-effects on external apical root resorption. Individuals carrying the AA genotype in VDR rs2228570 had a 21% higher EARRmol than those having AG and GG genotypes (95% CI: 1.03,1.40). EARRmol in heterozygous rs2228570, was 12% lower than for homozygotes (95%CI: 0.78,0.99). Participants with the CCG haplotype (rs1544410-rs7975232-rs731236) in VDR had an EARRmol 16% lower than those who did not carry this haplotype. Regarding CYP27B1 rs4646536, EARRinc in participants who had at least one G allele was 42% lower than for homozygotes AA (95%CI: 0.37,0.93). Although these results did not remain significant after multiple testing adjustment, potential associations may still be suggested. Further replication studies are needed to confirm or refute these findings.


Subject(s)
Root Resorption , Vitamin D , Humans , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Root Resorption/diagnostic imaging , Root Resorption/genetics , Receptors, Calcitriol/genetics , Genotype , Vitamins , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Case-Control Studies
18.
Indian J Pediatr ; 90(12): 1182-1190, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36692815

ABSTRACT

OBJECTIVE: To understand the phenotypic and genotypic spectrum of genetic forms of rickets in 10 families. METHODS: Detailed clinical, radiographic, and biochemical evaluation of 10 families with phenotypes suggestive of a genetic cause of rickets was performed. Molecular testing using exome sequencing aided in the diagnosis of six different forms of known genetic causes. RESULTS: Eleven disease-causing variants including five previously reported variants (CYP27B1:c.1319_1325dup, p.(Phe443Profs*24), VDR:c.1171C>T, p.(Arg391Cys), PHEX: c.1586_1586+1del, PHEX: c.1482+5G>C, PHEX: c.58C>T, p.(Arg20*)) and six novel variants (CYP27B1:c.974C>T, p.(Thr325Met), CYP27B1: c.1376G>A, p.(Arg459His), CYP2R1: c.595C>T, p.(Arg199*), CYP2R1:c.1330G>C, p.(Gly444Arg),SLC34A3:c.1336-11_1336-1del, SLC2A2: c.589G>C, p.(Val197Leu)) in the genes known to cause monogenic rickets were identified. CONCLUSION: The authors hereby report a case series of individuals from India with a molecular diagnosis of rickets and provide the literature review which would help in enhancing the clinical and molecular profile for rapid and differential diagnosis of rickets.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/diagnosis , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Exome Sequencing , Genotype , Phenotype , Mutation
19.
J Steroid Biochem Mol Biol ; 228: 106252, 2023 04.
Article in English | MEDLINE | ID: mdl-36657729

ABSTRACT

Vitamin D metabolism centers on regulation in the kidney of CYP27B1 induction by PTH, suppression by FGF23 and 1,25(OH)2D3, and reciprocal CYP24A1 suppression by PTH, and induction by FGF23 and 1,25(OH)2D3. This coordinated genomic regulation through enhancer modules results in the production and dynamic maintenance of circulating endocrine 1,25(OH)2D3 which, together with PTH and FGF23, controls mineral homeostasis. We discovered enhancers near Cyp27b1 in the mouse kidney located within intronic regions of Mettl1 and Mettl21b genes. These kidney-specific enhancers ("M1", "M21") control Cyp27b1. Through CRISPR/Cas deletion, we found that PTH activation of Cyp27b1 is lost with deletion of M1, whereas FGF23 suppression is lost with deletion of M21. The combination of both deletions (M1/M21-DIKO) eliminated the suppression by 1,25(OH)2D3. Cyp24a1 activation by 1,25(OH)2D3 is controlled by a promoter proximal pair of VDREs as well as a distal region - 35 to - 37 kb (DS2). We also found that FGF23 activation and PTH suppression of Cyp24a1 was located in a region - 21 to - 37 kb downstream (DS1). More recently, using in vivo ChIP-seq in mouse kidney, we demonstrate that PTH activation rapidly induces increased recruitment of pCREB and its coactivators, CBP and CRTC2, to the M1 and M21 enhancers near the Cyp27b1 gene. At distal enhancers of the Cyp24a1 gene, PTH suppression promotes dismisses CBP with only minor changes in pCREB and CRTC2 occupancy, all of which correlate with a suppression of basal histone acetylation across this locus and reduced transcripts. Surprisingly, we find that 1,25(OH)2D3 suppression increases the occupancy of CRTC2 in the M1 enhancer, a novel observation for CRTC2 and/or 1,25(OH)2D3 action. The suppressive actions of 1,25(OH)2D3 and FGF23 at the Cyp27b1 gene are associated with a reduction in CBP recruitment at these enhancers. Although FGF23-regulated transcription factors remain unknown, we hypothesize that VDR occupancy induced at the M1 and M21 enhancers by 1,25(OH)2D3 likely disrupts or competes with the active conformation of these CREB modules thereby preventing full induction by PTH. Our findings show coactivators such as CRTC2 and CBP contribute to Cyp27b1 and Cyp24a1 transcription and provide molecular insight into the coordinated mechanistic actions of PTH, FGF23, and 1,25(OH)2D3 in the kidney that regulate mineral homeostasis.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Calcitriol , Mice , Animals , Calcitriol/pharmacology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Kidney/metabolism , Genomics , Receptors, Calcitriol/metabolism , Vitamin D/metabolism
20.
J Clin Endocrinol Metab ; 108(4): 812-826, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36321535

ABSTRACT

INTRODUCTION: Vitamin D-dependent rickets type 1A (VDDR1A) is a rare genetic disease associated with loss-of-function variations in the gene encoding the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). Phenotype-genotype correlation is unclear. Long-term outcome data are lacking. The objective of this study was to describe characteristics and outcomes to search for a phenotype-genotype correlation. METHODS: We retrospectively collected clinical data, genetic features, and outcomes from 24 genetically confirmed cases from 10 French centers; results are presented as median (min-max). RESULTS: Clinical symptoms at diagnosis (age, 1.5 [0.5-8.7] years) were mainly bone and neurological abnormalities, and laboratory data showed hypocalcemia (1.97 [1.40-2.40] mmol/L), hypophosphatemia (-3.4 [-13.4 to (-)0.2] SD score for age), low 25OHD and low 1,25(OH)2D3, secondary hyperparathyroidism with PTH at 6.6 (1.3-13.7) times the upper limit for normal (ULN; PTH expressed as ULN to homogenize data presentation), and increased alkaline phosphatase (1968 [521-7000] IU/L). Bone radiographs were abnormal in 83% of patients. We identified 17 variations (11 missense, 3 frameshift, 2 truncating, and 1 acceptor splice site variations) in 19 families (homozygous state in 58% [11/19]). The partial loss-of-function variation p.(Ala129Thr) was associated with a milder phenotype: older age at diagnosis, higher serum calcium (2.26 vs 1.85 mmol/L), lower PTH (4.7 vs 7.5 ULN), and lower alkaline phosphatase (759 vs 2082 IU/L). Patients were treated with alfacalcidol. Clinical (skeletal, neurological), biochemical, and radiological outcomes were satisfactory, and complications occurred if there was bad adherence. CONCLUSION: Overall, our findings highlight good outcomes under substitutive treatment and the need of a closer follow-up of eyes, teeth, kidneys, and blood pressure in VDDR1A.


Subject(s)
Familial Hypophosphatemic Rickets , Rickets , Humans , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/therapeutic use , Retrospective Studies , Rickets/genetics , Familial Hypophosphatemic Rickets/diagnosis , Vitamin D/therapeutic use , Phenotype , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...